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Peridynamic Constitutive Model for Concrete 

By 

Bhanu Kiran Tuniki 

B.E., Civil Engineering, Osmania University, 2008 

M.S., Civil Engineering, University of New Mexico, 2012 

 

Abstract: 

 Peridynamics, as originally proposed by Silling in 1998, is a spatio-temporal 

integral reformulation of the classical partial differential equations of motion. In contrast 

with the classical theory, the concepts of stress and strain are not needed in peridynamics. 

The original bond-based peridynamic theory has several drawbacks including being 

limited to modeling materials with Poisson’s ratio of one-quarter. In 2007, Silling 

generalized his model by introducing state-based peridynamics. Sau et al. proposed a 

micropolar model for concrete in 2007, but were unable to fully implement the model. In 

2011, Sakhavand developed software called pdQ that is capable of modeling micropolar 

peridynamics. While he did model concrete using the bond-based peridynamic theory, he 

did not attempt to model concrete using micropolar peridynamics. In 2011 Rahman 

developed a micropolar peridynamic model with hexagonal particle lattice. Rahman 

studied only linear elastic problems with this model.  
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In this thesis, we propose a new micropolar peridynamic lattice-based damage 

model for concrete. The model is implemented in pdQ. This model is state-based, in that 

the force acting between two particles no longer depends only on the states of the two 

particles, but it also depends on the states of other neighboring particles.  

We obtained appropriate parameters for a micropolar, lattice-based, and state-

based constitutive model for the concrete. Example problems, including uniaxial tension, 

uniaxial compression, and confined compression are considered. Known features, 

including elasticity, damage, and fracture, of concrete appear to be well-replicated by the 

new model. Also other example problems are solved to demonstrate the versatility of the 

new model. 
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Chapter 1. Introduction 

Concrete is an important building material. By accurately modeling concrete, we 

can utilize its full strength, thus saving material in civil engineering structures. This saves 

money and increases safety. Several models have been proposed for concrete, but none of 

these models has proven fully effective for modeling fracture and damage.  

 Though continuum mechanics and finite element methods have been applied to 

materials like concrete, they have limited application when modeling material damage. 

With damage, the basic assumption of displacement continuity is usually not valid.  

 Researchers have applied fracture mechanics methods to model concrete. The 

smeared crack approach and the discrete crack approach have been used to model 

damage. In smeared crack models, the cracks are represented through changes of the 

material constitutive equations. The dependency of the results on mesh refinement is the 

major deficiency with smeared crack models [Nguyen and Chun 2005]. The discrete 

crack approach [Cervenka et al. 2001] is directly based upon the principles of linear 

elastic fracture mechanics (LEFM) or upon the cohesive crack model. This method is 

more suitable to capture failure localization, but requires redefinition of the geometry and 

re-meshing to account for progressive crack propagation. To overcome these limitations, 

new methods need to be developed that can more effectively model quasi-brittle materials 

like concrete. 
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1.1 Peridynamic Modeling 

 In an effort to overcome the limitations of classical continuum and fracture 

mechanics, the peridynamic model was proposed by Silling [Silling 1998]. The term 

‘peridynamic’ is derived from the Greek words ‘near’ and ‘force’. Silling’s peridynamic 

equations do not assume spatial differentiability of the displacement field, and permit 

displacement discontinuities to arise as part of the solution. The peridynamic theory is 

non-local, locality is recovered as a special case, and peridynamics can be thought of as a 

generalization of the classical theory of elasticity.  

 The peridynamic method uses spatial integral equations to compute the forces 

acting upon the particles. The particle positions are integrated in time, based upon these 

evolving forces. This is an effective method for modeling damage, which classical 

theories fail to efficaciously model. The applicability of peridynamic equations at all 

points within the model avoids special cases at discontinuities in the displacement field. 

For example, in peridynamics, there is no need for a separate crack growth law based on 

a stress intensity factor.  

1.2 pdQ Software 

 Recently, Atlas, Sakhavand and Gerstle developed particle simulation software 

called pdQ [Sakhavand 2011]. This software is used throughout this research. 

Preprocessing and postprocessing of the simulations are implemented using Matlab. 

Simulations employ high-performance parallel computers. Honarvar recently updated 

pdQ to allow for micropolar state-based peridynamic modeling of solids. On 32-

processor computers, simulations with one million particles are reasonable, and the 

solution time is approximately inversely proportional to the number of processors. 
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  In this thesis, the pdQ software is used to implement the lattice-based micropolar 

model for concrete. The dynamic relaxation method, with artificial enhanced damping is 

used to achieve the steady state static solution.  

 

1.3 Objective of Thesis 

The objective of this thesis is to develop a new working damage model for 

concrete. For this purpose we start with the micropolar peridynamic model proposed by 

Sau [Sau 2007]. We have modified this micropolar model with damage parameters with a 

new pairwise force function. This new micropolar model is implemented in conjunction 

with the lattice-based peridynamic method developed by Rahman [Rahman 2012]. This 

method is used to model many of the known features of concrete including elasticity, 

damage, and fracture. This model is verified by solving various example problems.  

 

1.4 Scope of Thesis 

 In this research, various concrete models have been studied and the micropolar 

model proposed by Sau [Sau 2007] is used as a starting point to implement lattice-based, 

state-based, micropolar peridynamics. Latticed-based peridynamics, proposed by Rahman 

[Rahman 2012] is shown to have less severe boundary effects than the original 

implementation of peridynamics. Lattice-based peridynamics, with material horizon 

slightly larger than the particle spacing, reduces the number of particle interactions 

required. 
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 This thesis is divided into six chapters: Introduction, Literature Review, 

Peridynamic Model for Concrete, Calibration of Peridynamic Parameters, Examples, and 

Conclusions. 

 Chapter Two is the literature review, divided into five sections. The first section 

introduces the theory of peridynamics. In the second section, the micropolar model 

proposed by Sau is discussed. In the third section, various lattice models are discussed 

and lattice-based peridynamics is studied. In the fourth section, various concrete models 

that have been proposed by other researchers are discussed. In the fifth section, the 

dynamic relaxation method is discussed.  

 Chapter Three explains the new micropolar model that is proposed in this study to 

model damage of the concrete. In this chapter, a brief description of the original 

peridynamic discretization method (which assumes an infinite number of particles in R3 

space) is first presented to explain why we have adopted the lattice model instead. 

 In Chapter Four, the parameters of the micropolar model proposed in the Chapter 

Three are calibrated for a typical concrete. This chapter is divided into three sections. In 

the first section, concrete material model properties are calibrated for uniaxial tension, in 

second section concrete material model parameters are calibrated for uniaxial 

compression, and in the third section concrete properties are verified for confined 

compression. 

 In Chapter Five some example problems are simulated to verify the model. These 

example problems include a simply supported beam with and without tension 

reinforcement, Cantilever beam with and without tension reinforcement. These problem 
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have demonstrated the capabilities of the concrete model that has been presented in 

Chapter Three. 

 The last chapter summarizes the work done in this thesis, draws conclusions and 

suggests future work to improve the model. And the list of references that are studied 

during this research are presented at the end. 

 



www.manaraa.com

 
 

6 
 

Chapter 2. Literature Review 

 Continuum mechanics fails to adequately model cracking. The limitations of 

continuum mechanics are partially addressed by the field of the fracture mechanics, but 

fracture mechanics has its own limitations  

 The peridynamic model has advantages for modeling damage in solids. In this 

model, the structure is thought of as a collection of discrete particles with inter-particle 

force functions called peridynamic forces. The forces and displacements acting upon each 

particle are computed using integration. The basic equations can be applied anywhere in 

the model including at the cracks, so no additional theories are necessary for studying 

damage and cracking using peridynamics. 

2.1 Peridynamic Model  

 No assumptions, such as of small deformations or of material continuity, need to 

be made in peridynamics. Discontinuities and cracks emerge with the peridynamic 

solution. Materials are modeled through the inter-particle force functions. In 

peridynamics, the motions of particles are assumed to follow Newton’s second law.  

The maximum interaction distance between particles in peridynamics is termed 

the “material horizon (δ)”. When the distance between two particles is less than or equal 

to material horizon then they potentially interact and the pairwise force between them is a 

specified function that depends (in the original bond-based theory) upon both initial and 

the deformed positions of the two particles. [Silling 1998].   
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 Referring to the Fig. 2.1, at any point ݔi in the reference configuration, R, and at 

time t, the force ܮ (ݔi, t) that all particles ݔj exert on ݔi is given by: 

 

 
Fig 2.1 Terminology of Peridynamic model. 

 

  =  (t ,ݔ) ܮ ݂൫ݑ൫ݔ, ൯ݐ െ ,ݔ൫ݑ ݔ			,൯ݐ െ ൯݀ݔ ܸோ  R,   t ≥ 0 (2.1)   ∍ ݔ   ∀     

 where ܮ is the pair wise force (per unit volume) acting upon ݔ due to all particles ݔ, ݑ 

is the displacement field, and ݔ is a point anywhere in the region R.  The underscore 

indicates a physical vector quantity. ݂ is the pairwise force (per unit volume squared) 

acting between particles i and j. 

More concisely, 

ߦ  ߟ
ݑ

ݑߦ

dVi 

dVj 

 ݔ
 ݔ

X 

Y 

Z 

R 
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  = (iݔ)ܮ ݂൫ݑ െ ,ݑ ݔ െ ൯݀ݔ ܸு   ∊   H,   t ≥ 0 (2.2)ݔ ,ݔ   ∀  	

Where H is the region including หݔ െ   .ห < δݔ

The peridynamic vector equation of motion is given by 

ݑߩ 	ൌ 	 ܮ 		ܾ	, (2.3) 

where ܾ is the external force per unit reference volume, and ρ is the material density. 

For static conditions, the peridynamic equilibrium equation is given by 

ܮ 		ܾ = 0    or  ݂ ቀߟ, ,ߦ ቁߠ ݀ ܸ  ܾ ൌ 0ு  (2.4) 

where ߟ ൌ ݑ െ ߦ  andݑ ൌ ݔ െ   are the relative displacement and relative positionݔ

vectors. 

For a bond-based peridynamic linear elastic material, the pairwise force function, ݂, is 

represented as [Silling 1998, Gerstle et al. 2005],	

݂ 	ቀߟ, ቁߦ ൌ ܿ ቆ
ቚకାఎቚିቚకቚ

ቚకቚ
ቇ ൌ  (2.5) ݏ	ܿ

where ݂	has units of force per unit volume squared, c is called the peridynamic 

microelastic constant and s is the stretch of the peridynamic link.  

In this model, Silling assumes that the force between two particles depends only 

on the relative positions (current and reference) of two particles. The original 
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implementation of the peridynamic method (in EMU) was for a cubic arrangement of 

particles with the material horizon being three times the spacing of the particles. With 

this method, in 3D problems each particle potentially interacts with 106 other particles. In 

the current lattice-based state-based peridynamic method the material horizon is slightly 

greater than the particle spacing reducing the number of particle interactions to 18 in 3D, 

or 6 in 2D, or 2 in 1D. The original implementation of peridynamics [Silling, 1998] was 

only capable of modeling materials with Poisson’s ratio of one quarter which makes the 

method unsuitable for materials like concrete with Poisson’s ratio of approximately 0.2. 

Silling showed that the peridynamic method can model discontinuities of various 

types [Silling 1998].  

2.2 Micropolar Model  

In 2007, Sau proposed the micropolar peridynamic model, generalizing the original bond-

based peridynamic model of Silling [Silling 1996] by adding peridynamic moments, thus 

allowing materials with varying Poisson’s ratio to be simulated. In the original 

micropolar model [Gerstle et al. 2007], an infinite number of infinitesimal force-

displacement relations connect infinitesimally sized material particles together. These 

infinitesimal force-displacement relations are called “micropolar peridynamic links” 

[Gerstle et al. 2007].   

In the static micropolar peridynamic model, 

 ݂ ቀߟ, ,ߦ ቁߠ ݀ ܸ  ܾ ൌ ݑߩ 	ൌ 	0ு  (2.6) 
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and 

 ݉ ቀߟ, ,ߦ ቁߠ ݀ ܸ  ݉ ൌ ሷߠ	ܫ ൌ 	0ு  (2.7) 

where ߠ is the relative rotation,	ߠሷ 	angular acceleration and ݉		is the moment exerted by 

particle j upon particle i. 

Sau found the micro elastic parameters, c and d, for the micropolar peridynamic linear 

elastic model [Gerstle et al 2007]. 

For 2D plane stress conditions 

ܿ ൌ 	 ா

గఋయሺଵି	µሻ
 ,     ݀ ൌ 	 ாሺଷµିଵሻ

గఋሺఓమିଵሻ
    (2.8) 

where  E is the Young’s modulus of the material, µ is the Poisson’s ratio, and δ is the 

material horizon. By this work he also expressed peridynamics microelastic constants in 

terms of the classical macroelastic constants. 

Similarly, for 2D plane strain conditions 

ܿ ൌ 	 ா

గఋయሺଵି	µିଶఓమሻ
 , ݀ ൌ 	 ாሺଵିସఓሻ

గఋሺଵିఓିଶఓమሻ
    , and  (2.9) 

for 3D conditions 

ܿ ൌ 	 ா

గఋరሺଵି	ଶµሻ
 ,     ݀ ൌ 	 ாሺଵିସµሻ

ସగఋమሺଵିఓିଶఓమሻ
 .   (2.10)  
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In this model Sau found that the stiffness of the simulated material near the 

domain boundary is reduced. The peridynamic theory converges to the classical theory as 

δ is decreased. 

Gerstle et al., proposed a micropolar model for concrete with seven parameters: c, 

d, δ, stens, scomp, αtens and αcomp [Gerstle et al. 2007]. Figure 2.2 shows the micropolar 

model for concrete. 

 
  

In Fig 2.2, f is the pairwise force between two particles, and S is the stretch 

between two particles. Stretch is the ratio of the distance between particles in the 

deformed configuration to the distance between the particles in the reference 

configuration. St is the maximum stretch of any link connected to the particle i. 

ሼ ݂ሽ ൌ ቂ݇ ቀܿ, ݀, ,݅ݔ ቁቃ݆ݔ උ ݀ඏ 

Stens 

Scomp 

f 

St > Stens 

Fig. 2.2 Constitutive Behavior of a Micropolar Peridynamic Link for Concrete. 

St  <  Stens 

αtens Stens 

S 

αcompScomp 
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Familiarity with the stiffness matrix is essential to understand the micropolar 

peridynamic model for concrete. For a bond link, a stiffness matrix [k] is a matrix 

relating the nodal forces {f} and nodal displacements {d}: 

{f}  = [k] {d}.  (2.11)   

For a 2D model shown Fig. 2.3, the degrees of freedom are shown on Fig 2.4. The 

peridynamic link between two particles has an area A, length L, moment of inertia I, and 

the modulus of elasticity E. The force-displacement relation, assuming small 

deformations with respect to the length of the link is, 

 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ
መ݂
௫,

መ݂
௬,

ෝ݉௭,
መ݂
௫,

መ݂
௬,

ෝ݉௭,ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

 =

ۏ
ێ
ێ
ێ
ێ
ۍ ܮ/ܿ
0
0

െܿ/ܮ
0
0

0
ଷܮ/12݀

ଶܮ/6݀

0
െ12݀/ܮଷ

ଶܮ/6݀

0
ଶܮ/6݀

ܮ/4݀
0

െ6݀/ܮଶ

ܮ/2݀

െܿ/ܮ
0
0
ܮ/ܿ
0
0

0
െ12݀/ܮଷ

െ6݀/ܮଶ

0
ଷܮ/12݀

െ6݀/ܮଶ

0
ଶܮ/6݀

ܮ/2݀
0

െ6݀/ܮଶ

ܮ/2݀ ے
ۑ
ۑ
ۑ
ۑ
ې

ە
ۖۖ

۔

ۖۖ

ۓ
ොݑ
ොݒ
௭,ߠ
ොݑ
ොݒ
௭,ۙߠ

ۖۖ

ۘ

ۖۖ

ۗ

 

where c = EA, and d = EI. 

y 

x 

ොݔ

	ොݕ

ሺݔ, 	ሻݕ	

൫ݔ, ൯ݕ

i 

j 

Peridynamic link 
ξij 

L 

Fig 2.3 Peridynamic link for 2D 

ሺݑ, 	ሻݒ	

൫ݑ, ൯ݒ
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  In this micropolar model, peridynamic force-displacement relations between two 

particles will remain linear as long as the stretch, S, is between the limits Scomp and Stens. 

If the stretch, S,  is more than Stens then the peridynamic forces between two particles are 

constant up to the limit of αtens Stens , after which the force becomes zero so that the 

particles no longer interact. This model doesn’t specify how moments change after S > 

Stens. 

 In compression, if the stretch, S, exceeds Scomp there are two possibilities. First, if 

the maximum stretch (St) in any links connected to the particle ‘i’ is more than the linear 

elastic tensile limit (Stens) then they follow the path designated with St > Stens in the Fig. 

2.2, by which the force between particles will be constant up to the limit of Scomp αcomp 

after which it drops to zero. Secondly, if the maximum stretch (St) in any links connected 

to the particle “i” is less than Stens then the link will not fail and it follows the path 

designated with St < Stens. In this model, Sau just talked about the axial forces between 

	ොݕ

	௭,ߠ	ොݔ

	௭,ߠ

መ݂
௬,	

መ݂
௫,	

ෝ݉௭,

መ݂
௬,	

መ݂
௫,	 ෝ݉௭,

i 

j 

Fig 2.4 Degrees of freedoms for 2D link for linear elastic MPM 
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particles after cutoff stretch, but failed to explain the moments which is not clearly 

specified. In this thesis we propose a new micropolar peridynamic model for concrete and 

implement it within the context of lattice-based, state-based peridynamics [Rahman, 

2012].  

2.3 Lattice Model:  

Lattice models provide a numerical model for damage and cracking of concrete. 

Lattice models are not new; Hrennikoff in 1941 discretized the continuum in a lattice 

with truss or frame elements for solving problems in elasticity [Hrennikoff 1941]. 

Hrennikoff showed that plane-stress problems can be modeled by discretizing a 

continuum with bar elements (Fig 2.5). 

 

In this model the bars would need to be infinitesimally small to get the exact 

solution to the classical continuum elastic problem; with a finite number of elements, the 

Fig. 2.5 Triangular truss (using bar elements) used by Hrennikoff. The dashed 
line shows the deformed mesh. 

A 

A’ 



www.manaraa.com

 
 

15 
 

solution is only approximate. The main drawback of Hrennikoff’s approach is it produces 

a results with a Poisson’s ratio of one third which is appropriate for modeling steel 

structures but this approach is not appropriate for the concrete with its variable Poisson’s 

ratio of approximately 0.2.  

Hermann and his colleagues adopted the lattice model with beam elements to 

model fracture in concrete [Hermann et al., 1989]. Another lattice model was used for 

modeling fracture in concrete and sandstone laboratory-scale specimens [Schlangen et al., 

1991] [Schlangen et al., 1995]. In all these models they modeled cracks by removing an 

element (beam or bar) as soon as its force has exceeded a certain strength criterion, which 

removes mass from the problem as well. Several other researchers [Burt et al. 1997] 

[Zubelewicz et al. 1987] [Bazant et al. 1990] have also modeled concrete fracture using 

the lattice model with various levels of success.  

All these lattice models are discretized using beam or bar elements (with mass) to 

model the material specimen. On the other hand, in peridynamics the mass is 

concentrated at the particle level, and “elements” are used only to represent forces 

between particles. 

2.4 Concrete Models 

 The lattice based peridynamic model was proposed by Asif Rahman in 2012 

[Rahman, 2012], with the view of improving the micropolar peridynamic model proposed 

by Nicholas Sau. In this model Rahman choose the particle arrangement to be a 

hexagonal close-packed array.  The main difference between the lattice model 

peridynamics and the original implementation of the peridynamics is the arrangement of 

particles.  
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Fig 2.4 and Fig 2.5 show the hexagonal close-packed particles arrangement that 

was chosen to model lattice-based peridynamics. Rahman obtained the following micro 

elastic constants. 

 

 

For the 2D hexagonal lattice-based peridynamic model: 

For plane stress problems 

′ܧ′ܣ ൌ	 ாௌ௧

√ଷ	ሺଵିఓሻ
 (2.14) 

′ܧ′ܫ ൌ	 ாௌ
య௧ሺଵିଷఓሻ

ଵଶ√ଷሺଵିఓమሻ
 , and (2.15) 

for plane strain problems 

Fig 2.7 3D Lattice with 18 neighboring particles 
(Source: [Rahman 2012]) 

Fig 2.6 2D Lattice with six neighboring particles. 
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′ܧ′ܣ ൌ	 ாௌ௧

√ଷ	ሺଵିఓమሻ
 (2.16) 

′ܧ′ܫ ൌ	 ாௌ
య௧ሺଵିସఓሻ

ଵଶ√ଷሺଵିఓమሻ
 . (2.17) 

For 3D hexagonal lattice-based peridynamic model: 

ሺܧܣሻଵ ൌ 	െ
√ଶாௌర

ସௌమ	ሺఓାଵሻሺଶఓିଵሻ
 (2.18) 

ሺܧܫሻଵ ൌ 	െ
√ଶ൫ாௌరିସாఓௌర൯

ସ଼ሺఓାଵሻሺଶఓିଵሻ
 (2.19) 

ሺܧܣሻଶ ൌ 	െ
ாఓௌమ

ଶሺఓାଵሻሺଶఓିଵሻ
 (2.20) 

ሺܧܫሻଶ ൌ 	0 (2.21) 

 In equations 2.18-2.21, subscript 1 is for the links with length S, and the subscript 

2 is for the links with length of √2S. This lattice-based micropolar peridynamic model 

for concrete is shown to exhibit smaller boundary effects compared to the original 

implementation (bond-based) of peridynamics [Rahman, 2012]. Besides many 

advantages of this model such as, convergence with the solutions from theory of 

elasticity, Rahman’s model was only developed for linear elastic problems. On the other 

hand, In this thesis, we implemented a new micropolar peridynamic lattice-based state-

based peridynamic inelastic damage model for concrete. 

There are many other models proposed by the researchers to study the behavior of 

concrete. But many of them are not successful to model concrete accurately. All these 

models can be described under two major criterions like continuum and discrete.  

 

2.5 Dynamic Relaxation Method 

This method was introduced by Sir Richard Southwell for the solution of partial 

differential equations using finite difference approximations. In this thesis we use this 
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dynamic relaxation method to damp the model to achieve the steady state solution. This 

method does not require matrix manipulations for the solution of the system of non-linear 

equilibrium equations [Lewis, 2003]. The system oscillates about the equilibrium position 

and comes to the rest with influence of ‘damping’.  We employed viscous damping 

method in our solution. 

Dynamic relaxation method with viscous damping 

Fig.2.7(a) and Fig.2.7(b) show the undamped and the damped oscillations of a 

simple pendulum under external force P. We want our structures to be critically damped. 

The equation of motion for a discretized system of particles is given by the following 

equation, 

P = ሾ∑ߜܭሿ 	 ሷߜܯ	   ሶ (2.15)ߜܥ

where, P is the vector of external loads, ሾ∑ߜܭሿ  is the vector of internal forces with K 

respresenting the stiffness and δ is the vector of displacements, C is the damping matrix , 

 .ሶ is the vector of nodal velocityߜ ሷ is the vector of nodal accelerations andߜ

 

Critical viscous damping coefficient (C) 

The static or steady state solution cannot be achieved without viscous damping 

coefficient. For undamped oscillations shown in Fig.2.7 (a) the structure will oscillate for 

infinite time. Fig.2.7 (b) shows the solution for the case of damped oscillations. If the 

damping coefficient is less than critical damping factor then the solution will overshoot 

static equilibrium and the system is said to be under-damped.  
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The convergence to the static or steady solution is quicker in critically damped 

conditions. For this purpose a critical damping factor was chosen in order to achieve the 

solution in pdQ as fast as possible, this reduces the computation efforts and time.  More 

details concerning critical damping and dynamic effects are discussed in Chapter 5 

(Example).

Fig 2.7 (b) Damped oscillations of displacement in dynamic relaxation method 
(Adopted from Lewis 2003) 

Fig 2.7 (a) Undamped oscillations 
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Chapter 3. Peridynamic Model for Concrete. 

 In this chapter we present a new, lattice-based, micropolar peridynamic model for 

concrete, with the capability to model damage in both tension and compression. This 

model is similar to the very old strut-and-tie model for concrete [Yun, 1996]. The 

micropolar peridynamic model was originally proposed by Gerstle and his students 

[Gerstle at al., 2003] to overcome a drawback of the original peridynamics bond-based 

model, namely, that it models only materials with Poisson’s ratio of one-quarter (1/4).  

The new model is applicable to 1D, 2D, and 3D problems. In this thesis, for 

brevity, we restrict our attention to 2D models. We start by assuming a 2D hexagonal 

lattice of particles in the reference configuration, as shown in Fig.3.1. 

 

In 2D, the material horizon, δ, is chosen so that each particle interacts only with 

its six nearest neighbors, all at a distance ‘s’ away from it. We refer to each of these force 

interactions as a “link”. Referring to Fig. 3.2, the force-displacement relationship 

between neighboring particles includes two damage parameters, ωt and ωc. Both the 

parameters vary between 0, representing no damage, and 1, representing complete 

Fig. 3.1 – 2D hexagonal lattice of particles.
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damage, and because concrete is assumed not to “heal”, both damage parameters are 

assumed never to decrease with time. 

 

The pairwise force vector, {fij}, acting between the particles i and j is represented 

by 

{fi} = (1-ωt) (1-ωc) [kij] {dj} (3.1) 

where ωt is the tensile damage parameter and ωc is the compressive damage parameter 
associated with the link between particle i and j. 

A peridynamic link between the particles i and j for the micropolar model is 

assumed to have the same forces as a frame element as shown in Fig. 3.3.  

Referring to Fig. 3.3, the linear force-displacement relationship between two 

neighboring particles, {f} = [k]{d}, is developed assuming the 2D linear elastic 

hexagonal lattice-based peridynamic model [Rahman, 2012]. 

f 

S 

{f} = (1-ωt) (1-ωc) [kij] {dj} 

Stens αtens Stens 

Scomp αcomp Scomp 

if ωtmax = 0

if ωtmax > 0 

ωt = ωc = 0  0 < ωt  < 1 0 < ωc  < 1   ωt  = 1  ωc ≥ 1  

Fig. 3.2 Modified micropolar model for concrete 

ωtmax is the maximum tensile 
damage, ωt, of  any link attached to 
either of the particles connected to 
the link with stretch, S.  
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Rahman represented the axial (A’E’) and the flexural rigidity (I’E’) of the 

latticed-based 2D peridynamic link for the plain stress condition as 

′ܧ′ܣ ൌ	 ଶா∗ௗೡ
ଷሺଵିఓሻ∗ௌ

      and     ܧ′ܫ′ ൌ ா∗ௗೡ∗ሺଵିଷఓሻ∗ௌ

ଵ଼∗ሺଵିఓమሻ
. (3.2) 

From the recent work for the lattice-based peridynamic model for plain stress 

conditions [Rahman, 2012], Equation 3.1 can be rewritten in terms of peridynamic 

parameters as.  

ە
ۖ
۔

ۖ
ۓ ଵ݂

ଶ݂
݉ଷ

ସ݂

ହ݂
݉ۙ

ۖ
ۘ

ۖ
ۗ

ൌ ሺ1 െ ߱ሻሺ1 െ ߱௧ሻ * [k] *	

ە
ۖ
۔

ۖ
ۓ
݀ଵ
݀ଶ
݀ଷ
ସߠ
݀ହ
ۙߠ
ۖ
ۘ

ۖ
ۗ

 (3.3) 

where [k] is the stiffness matrix, given by 

k =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ሺܥଵܿଶ  ଶሻݏଶܥ
ሺܥଵ െ ݏଶሻܿܥ
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Peridynamic Link: A, E, I, L 
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Fig. 3.3 Peridynamic link with degrees of freedom shown. 
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where c = cos(θ), s = sin(θ), ܥଵ ൌ
ଶ∗ா∗ௗೡ

ଷ∗௦∗∗ሺଵିఓሻ
ଶܥ , ൌ 	

ଶ

ଷ∗య
ா∗ௗೡ∗ሺଵିଷఓሻ

ሺଵିఓమሻ
∗ ଷܥ ,ݏ ൌ

ଵ

ଷ∗మ
ா∗ௗೡ∗ሺଵିଷఓሻ

ሺଵିఓమሻ
∗ ସܥ ,ݏ ൌ

ଶ

ଽ∗

ா∗ௗೡ∗ሺଵିଷఓሻ

ሺଵିఓమሻ
∗ ହܥ ,ݏ ൌ

ଵ

ଽ∗
	ா∗ௗೡ∗ሺଵିଷఓሻ

ሺଵିఓమሻ
∗  in which E is ,ݏ

the Young’s modulus of the material, L is the length of the link, dvol is the volume of the 

particle, µ is Poisson’s ratio, and s  is the spacing of the particles. In the Equation 3.3, 

small deformations theory is not assumed and the stiffness of the link is calculated at 

every time step including large rotation of the link.  

 In above equation, spacing of the link, s, and the length of the link, L, is 

represented by the current distance between the two particles. 

The damage factor (ωt or ωc) is zero as long as the stretch in the link between two 

particles remains elastic, after which ωt is the function of the maximum stretch, S, of the 

link. If we observe the forces being calculated between the particles for a peridynamic 

link, they are dependent on axial and flexural rigidities of the link. In our model, the 

damage factors depend only on stretch, S. This may be an over-simplification, as it would 

appear that shear and bending damage may depend upon shear and bending deformations, 

in addition to the stretch of the link. In future work, a more precise model will perhaps be 

developed accounting for damage due to shear and flexural deformations.  

The tensile damage factor, ωt, is defined as follows: 

for S ≤ Stens,  

 ω୲ ൌ max൛0,ω୲ሺ୮୰ୣ୴ሻൟ,  

for Stens ≤ S, 

 ω୲ 	ൌ min ቄmax	 ቀ
൫ௌ	–	ௌೞ൯

ሺఈೞௌೞିௌೞ	ሻ
,ω୲ሺ୮୰ୣ୴ሻቁ , 1	ቅ 

where, ωt(prev) is the maximum tensile damage factor of the link at any previous time. 
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On the other hand, we assume that damage in a link in compression can occur 

only if there is tensile damage in any of the links connected to either of the particles 

associated with the link.  This is because a compression strut of concrete is strong in 

compression, but if any other link connected to the either of the particles has a tensile 

damage then the strut loses lateral stability.  If any of the other link connected to a 

particle associated with the link has tensile damage (ωt > 0), then the link with sufficient 

compressive stretch is assumed to experience compressive damage and 

 for Scomp ≤ S, 

  ߱ 	ൌ 	max൛0,ωୡሺ୮୰ୣ୴ሻൟ, while 

 for S ≤ Scomp, 

 ωୡ 	ൌ min ൜max	 ൬
൫ௌ	–	ௌ൯

൫ఈௌିௌ	൯
,ωୡሺ୮୰ୣ୴ሻ൰ , 1	ൠ. 

We assume that the peridynamic link cannot fail in compression, i.e it cannot 

have any damage (ωc = 0) if all the other links connected to either of the particles to 

which it is connected have stretches within elastic limits.  

In this chapter a new micropolar peridynamic damage model for concrete has 

been proposed. Calibration of the seven parameters (s, αc, Sc, αt, St, E, µ) for this new 

micropolar, state-based peridynamic damage model for cementitious material are 

described in the Chapter 4.  
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Chapter 4. Calibration of Peridynamic Parameters 

In this chapter the peridynamic material parameters for the concrete model are 

calibrated. The results from this calibrated model are compared with the predictions of 

the American Concrete Institute (ACI) code. Various simulations are modeled to obtain 

material parameters, by trial and error. The basic material parameters for the micropolar, 

lattice-based, state-based peridynamic model are spacing, s, Young’s modulus, E, 

Poisson’s ratio, µ, critical tensile stretch Stens, critical compression stretch Scomp, constants 

αt and αc. Damage factors evolve in the simulations based on these calibrated parameters. 

The parameter s is chosen either based on upon aggreagate size or upon computational 

considerations. E and µ are used to obtaion the microelastic problem parameters C1, C2, 

C3, C4, C5, and C6, 

4.1 Concrete in Tension:  

Concrete is weak in tension when compared to its compressive strength. The 

tensile strength of concrete is approximately 8% to 15% of its compressive strength.  For 

uniaxial tensile loading, cracks will propagate in a direction perpendicular to the applied 

loads. 

To calibrate concrete in tension, various models have been simulated, an average 

value of critical stretch, Stens, is found. For all the concrete plate models, an axial load is 

applied to the three layers of particles on both the top and bottom of the plate as shown in 

Fig. 4.1. An example of a concrete plate with dimensions of 15” x 45” x 1” is shown in 

Fig. 4.1.  
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With reference to the Fig. 4.1, the particles are displayed with a color code. A 

green color node represents a particle which is free to move in the X and Y directions, 

while the blue color nodes represent a particle that is loaded in the Y-direction (axial 

loading). Equal and opposite vertical loads are applied to the particles that are in upper 

the and lower three layers. 

A particle is chosen to monitor the deformations as a function of time. The 

complete data of this particle is written to a separate file and the required time history 

graph is plotted.  By observing this time history graph, one can easily identify whether 

the model has damped to the steady state solution, or failed.  

 

Fig 4.2 shows a time history plot (displacement versus time) of the extreme upper 

right particle.  It is clear from this graph that after 1,500 time steps there is no further 

Fig. 4.1 Concrete plate 15” x 45” x 1” modeled for calibration. 
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change in the position of the particle. This confirms that a steady state solution has been 

achieved.  Fig. 4.3 shows the deformed shape of concrete plate subjected to axial tension 

after the steady state solution has been achieved. The deformations have been magnified 

by a factor of 5,000. This simulated model did not fail in tension. In subsequent trial the 

load is increased to find the failure load of the specimen. Various simulations are 

modeled by changing the load and the critical stretch, Stens. The critical stretch, Stens, of 

the model for concrete is assumed to have been determined when the failure load from 

pdQ is approximately equal to the tensile strength, f’
t, of the concrete. 

 

Fig. 4.2 Time history plot of the concrete plate loaded in tension. 
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Fig. 4.4 shows the deformed shape of the concrete plate after failure. To compare 

the deformed shape of the concrete plate, a reference configuration of the concrete plate 

is plotted to the left. The damaged links are plotted in a green color. A time history plot is 

shown in Fig. 4.5 that shows that the monitored particle started accelerating after 

timestep 1,500. The load ramped gradually upto the twice the fundamental time period of 

the concrete plate. Total time of simulation is three times the fundamental time period. It 

appears that the deformations are zero up to 1,500 time step (5.0E-3 sec), but actually the 

deformations are very small compared to the deformations after 1,500 time step (5.0E-3 

sec), where the particle started accelerating with large deformations.  

This concrete plate model failed in tension when the cracks initiated between the 

loaded and unloaded layers of particles. As the tensile load is being applied to both top 

Fig. 4.3 Deformed shape of concrete plate in tension 
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and bottom layer with equal and opposite magnitude, the fracture of the plate is expected 

to appear near the top and bottom loaded layers and the crack propagates along the 

horizontal direction. 

 

 
This is the similar cracking behavior predicted by other researchers [Huang, 

2011]. We can see that with the magnification factor is set to 50, we are able to see large 

deformations with the initiation of cracks. Time history plot shows that the deformation 

of the particle is increasing as the time of simulation increases. This implies that no 

steady-state solution exits, and the plate has failed. 

Fig. 4.4 Deformed shape of concrete plate with tension cracks. 
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The direct tensile strength of the concrete is calculated from the report “cracking 

of concrete members in direct tension”, ACI Committee 224. With reference to ACI 

209R, the following equation estimates the tensile strength, f ’
t, of the concrete for direct 

tension as the function of uniaxial compressive strength, f’
c [ACI, 1997]. 

 f’t = gt [wc f’c]
1/2 (4.1) 

where wc is the unit weight of concrete (lb/ft3), f’c is the compressive strength of concrete 

(lb/ft2), and gt = 0.33. For normal-weight concrete with f’c = 4,000psi, 

 f’t = 0.33 *(145*4000)1/2 = 251 psi. 

 Load Pt = area x f’t = 15 in * 1 in  * 251 psi = 3,765 lbs 

   =16,746 Newtons 

 Load per each of the 47 loaded particles =356 N/Particle   

Fig. 4.5 Time-history plot of concrete plate loaded in tension. 
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The material property, Stens, is adjusted to fail the model at the same load that was 

calculated from the ACI codes.  

 Load per each 47 loaded particles from pdQ = 360 N/Particle. 

If f’t is the strength of the concrete, then since  

 E ε’t = f’t (4.2) 

Where ε is the tensile strain of the concrete, E is the Young’s modulus of the concrete. 

From Equation 4.2, using, ܧ	 ൌ 	57000ඥ ݂
ᇱ	, ε = Stens = 


ᇲ

ா
 = 

ଶହଵ	௦

ଷସ,	௦
ൌ 0.0000696  

The average critical tensile stretch, Stens, was found to be 0.00006034. The ratio of 

the critical stretch, Stens to the limiting strain in tension from ACI is 0.87. We can express 

the relationship between tensile critical stretch, , Stens, and the limiting tensile strain from 

ACI code as, 

 S୲ୣ୬ୱ 	ൌ
.ଷସ

.ଽ
	

ᇲ

ா
ൌ 0.87	 

ᇲ

ா
	 (4.3) 

Table 4.1 summarizes the various models that we considered for calibrating the 

concrete in tension. 
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Table 4.1 Concrete Plates Considered for Tension Models 

 

Number of 
particles 
loaded 

Load at failure (N/Particle) 
Difference:  

(pdQ-Exact)/Exact 
pdQ ACI 

5 x 15 17 365 327 11.62 
15 x 45 47 355 360 -1.39 
20 x 60 62 360 360 0.00 
30 x 90 92 358 363 -1.38 
40 x 120 122 355 365 -2.74 
60 x 180 182 367 355 3.38 
80 x 240 242 355 368 -3.53 

 

4.2 Concrete in Uniaxial Compression 

The uniaxial compressive strength, f’c, of concrete is the standard property the 

concrete that engineers use in designing concrete structures. Compressive strength of 

concrete is found from laboratory testing using the universal testing machine. Fig. 4.6 

shows a concrete specimen that has failed in compression. The concrete plate shown in 

Fig. 4.1 is now axially loaded in compression and a similar study is conducted to find the 

critical stretch in compression. The concrete is weak in tension, thus a concrete specimen 

that is loaded in compression first fails transversely in tension due to the Poisson’s effect.  
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  Fig 4.7 is a time history plot for the concrete plate axially loaded in compression. 

This time history plot also shows the convergence of the solution to the steady state 

solution. The critical damping factor was chosen so as to damp the model monotonically 

to a steady state solution. Fig. 4.8 shows the elastic deformed shape of the axially loaded 

concrete plate in compression.  Black particles represent the reference position and red 

particles represent deformed position. Deformations are magnified by a factor of 2,000. 

Fig. 4.6 Concrete specimen failed in compression test. 
[NRMCA, 2003] 
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Fig. 4.8 Deformed shape of concrete plate in compression. 

Fig. 4.7 Time history plot of concrete plate loaded in compression 
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Fig. 4.9 and Fig. 4.10 refer to a model that failed in compression. The time history 

plot shows that the deformation of the particle is increasing as the time of simulation 

increases. This implies that particles are not experiencing any bond between neighboring 

particles. They are free to move with constant acceleration. 

Tensile damage shown with green lines are shown in Fig 4.10, which is expected 

from classical mechanics. Crushing of the particles is represented by the breaking of 

compressive links which is shown by blue lines. 

 

 
Fig. 4.9 Time history plot of concrete plate loaded in compression 
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 In this study the strength of concrete in compression is taken as ten times the 

strength of concrete in tension (f’t). Though the concrete strength is 4,000 psi, concrete 

exhibits some softening behavior earlier than f’c. The compressive strength of concrete 

used for calibration in compression is f’c = 2,510 psi. 

If f’c is the strength of the concrete, then since  

 E ε’c = f’c (4.4) 

Fig. 4.10 Deformed shape of concrete plate failed in compression. 
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Where ε is the compressive strain of the concrete, E is the Young’s modulus of the 

concrete. 

From Equation 4.4, using, ܧ	 ൌ 	57000ඥ ݂
ᇱ	,  

 ε = Scomp = 
ᇲ

ா
 = 

ଶହଵ	௦

ଷହ,	௦
ൌ 0.000696  (4.5) 

The average critical compressive stretch, Scomp, was found to be 0.00061875. The 

ratio of the compressive critical stretch, Scomp to the limiting strain in compression is 

0.88. We can express the relationship between compressive critical stretch, , Scomp, and 

the limiting tensile strain from ACI code as, 

 Sୡ୭୫୮ 	ൌ
.ଵ଼ହ

.ଽ
	

ᇲ

ா
ൌ 0.88	 

ᇲ

ா
	 (4.6) 

 An example calculations for the concrete plate shown in Fig. 4.1 loaded in 

compression is shown below; 

Allowable stress  (f’c)  = 2,510 psi 

 Loaded area               = 15” x 1” = 15 Sq. In  

 Load at failure            = 2,510 x 15 x 1 = 37,650 lbs 

  = 167,467.2  N 

Load per each of the loaded 47 particles  

 from Equation 4.5    = 3563.0  N / Particle   

Load per each of the loaded 47 particles 

 from pdQ                = 3600.0  N / Particle 
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Critical compressive stretch   Sc   = 0.00061875  

Table 4.2 summarizes the various models that are considered for calibrating the 

concrete model in compression. 

Table 4.2 Concrete Plates Considered for Compression Models 

Dimensions 
Number of 

Loaded 
Particles 

Load at failure (N/Particle) Difference:  

pdQ  
ACI load  
at failure 

ܳ݀ െ ݐܿܽݔܧ
ݐܿܽݔܧ

	ൈ 100 

15 x 45 47 3600 3563 1.04 
30 x 90 92 3640 3583 1.57 
40 x 120 122 3660 3738 -2.08 

 

4.2 Concrete in Confined Compression 

In this section the behavior of the concrete model under confined compression is 

investigated. The strength of the concrete plate is expected to be unbounded when loaded 

in hydrostatic compression.  

The concrete plate shown in Fig. 4.8 is loaded axially in compression with the 

confined boundary in the lateral direction. We allow the plate to compress in the 

longitudinal or the loaded direction. The boundary particles are restricted from moving 

horizontally. The Top three layers of particles are loaded.  

From the concrete model defined in Chapter 3 for lattice based state-based, 

micropolar peridynamics, we expect that the concrete should not fail in compression due 

to the restricted stretch in links in the lateral direction (tension). For concrete to fail in 

compression, there must be at least one tensile link that exceeds the elastic limit. Fig 4.12 
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confirms that the model defined for concrete represents the features of the concrete. The 

applied load for this model exceeds more than 16 times the strength of the concrete in 

tension, and the model is in linear elastic without any sign of damage.  

 
 

  
Fig. 4.12 Deformed concrete plate 15” x 46” with confined boundaries 

Fig. 4.11 Concrete plate 15” x 46” with confined boundaries 



www.manaraa.com

 
 

40 
 

We observe from the Fig. 4.12 that the concrete deformed significantly in the 

longitudinal direction.  But the concrete doesn’t experience any damage. This confirms 

the capability of modeling features of the concrete in confined compressions. 

The summary of the calibrated lattice-based, state-based, peridynamic damage 

model for concrete presented in this chapter is,  

S୲ୣ୬ୱ 	ൌ 0.87	 ௧݂
ᇱ

ܧ
 

Sୡ୭୫୮ 	ൌ 0.88	 ݂
ᇱ

ܧ
 

αtens    = 2 

αcomp  = 5. 

 

In this study we didn’t calibrate the parameter α for both compression and in 

tension. As the peridynamic material parameters for the concrete model has been defined 

in this chapter, it is necessary to check and verify the results. In the next Chapter 5, we 

simulate example problems with known behavior and verify the results from concrete 

model. 
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Chapter 5. Examples 

In this chapter example problems are presented to demonstrate the applicability of 

the concrete model proposed in Chapter 3. Various bench mark problems with known 

behaviors are modeled using pdQ and compared with the results predicted by the ACI 

code. 

As expected, many problems simulated using pdQ show variability of results with 

respect to rate of loading. Fig. 5.1 shows the deformed shape of the concrete plate shown 

in Fig. 4.1 with load increased gradually up to the fundamental time period of the 

structure (T) after which the load is held constant. The total time of simulation (3T) for 

this problem is three times the fundamental time period. Fig. 5.2 shows the deformed 

shape of the same concrete plate but with a different rate of loading. 

 
Fig 5.1 Concrete Plate under uniaxial tension with rampforce for time T 

P 

Pmax 

T 3T t 
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Load for the model in Fig 5.2 increased linearly from zero to two times the 

fundamental period of the structure, after which the load is held constant. The total time 

of simulation (3T) for the model is again three times the fundamental time period of the 

structure. This shows the dependence of the results up on the rate of loading. The model 

with the higher rate of loading failed earlier than the model with the lower rate of 

loading. 

All the examples in this thesis are simulated for a time of three times the 

fundamental time period of the structure. A standard rate of loading is employed to 

compare models and to calibrate the material parameters.  The load is increased linearly 

from zero up to the twice the fundamental period of the structure. 

 

 

 

Fig 5.2 Concrete plate under uniaxial tension with rampforce for time 2.0T 

Pmax 

P 

2T 3T t 
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Dynamic Factor 

 We employed viscous damping in our solutions as explained in Chapter 2.  

5.1 Unreinforced Simply Supported Beams 

 Fig. 5.3 shows a simply supported beam of dimensions 30” x 6” x 11”. The 

particle spacing is one quarter of an inch. The left support is a pin, and the right support is 

a roller. A uniformly distributed load is applied to the top of the beam as shown in 

Fig.5.3.  

 

 This cantilever beam has strength of 1,200 lbs/in. PdQ models this cantilever 

beam as stable until a load of 1,200 lbs/in is applied. If the load is further increased, then 

a flexural crack emerges from the bottom of the mid span, as expected. 

A personal computer with Intel Core 2 Duo T6600 @ 2.20 GHZ 2.20 GHz 

processors and 4 GB ram was used to run the simulation. With this computer, it takes 33 

minutes to complete the simulation. If the particle spacing were increased to one inch 

then the total number of particle interactions would be reduced. But with the coarser 

particle spacing the resolution of the cracks is not as clear.  

Fig. 5.3 Description of a simply supported beam  
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 From classical mechanics we know that, before cracking the maximum flexural 

stress occurs at mid span, so it is expected that the crack will initiate from the bottom mid 

span of the beam. 

Using L = 27”, f’t = 251 psi, c = 5.5”, and I = 
	ൈଵଵయ

ଵଶ
 = 665.5 in4, 

௫ܯ             ൌ 	
௪	మ

଼
ൌ 	 	ூ


  = 30,371 lb-in  

The load at which beam fails is w = 270 lb/in. 

A load of 300 lbs/in is applied on the beam shown Fig. 5.3. Fig. 5.4 shows the 

deformed configuration of the beam with damage. A flexural crack emerges from mid 

span where the bending moment is maximum for a simply supported beam. Crack 

propagation is not symmetrical to the span; this may be due to the unsymmetrical 

behavior of the supports (hinge and roller). This model also shows the damage over the 

supports, which is expected due to the stress concentration. 
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Fig. 5.4 Deformed shape of simply supported beam at (a) 8000 and (b) 9000 
time steps, respectively. 
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5.2 Simply-supported reinforced concrete beam 

 A simply-supported reinforced concrete beam with seven half-inch diameter bars 

is simulated as shown in Fig. 5.5. We expect that this beam should fails in shear (due to 

flexure), as the reinforcement provided increases the flexural strength of the beam. Fig. 

5.5 describes the beam that has been modeled for this example. 

 

 Particle spacing is chosen to be one inch. The personal computer used in the 

previous problem is again used to run this simulation. It took about an hour to complete 

the simulation. Due to the addition of steel bars in the beam, the time step required to 

obtain a stable solution is reduced, and therefore the simulation time is increased.  

The shear strength of the beam is calculated from the ACI shear specifications as 

ܸ ൌ ඥߣ2 ݂
′ܾ௪݀, (5.1) 

where bw is the width of the rectangular beam (20”), d is the effective depth of the beam 

’for normal weight concrete, and f 1 = ߣ ,(”13.5)
c is the compressive strength of the 

concrete at 28 days (4,000 psi) 

 The shear strength of the beam shown in Fig 5.5 is found to be 34.2 kips. The 

uniformly distributed load required to produce this shear is, 

ܹ ൌ ଶ


 = 683 lb/in. (5.2) 

Fig. 5.5 Description of a simply supported reinforced concrete beam  
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A load of 700 lbs/in is applied on the beam shown in Fig. 5.3. The deformed shape of the 

beam is shown in Fig. 5.6. 

 

Fig. 5.6 Deformed shape of a reinforced simply supported at (a) 45,000,  
and (b) 50,000 time steps respectively. 
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 Fig. 5.6 shows the deformed shape of a simply-supported reinforced concrete 

beam with damage and cracks. The green lines shown Fig. 5.6 represent the links that are 

broken in tension. There is distributed damage in the beam. If we closely observe the 

damage of the links as shown in Fig. 5.7 we see that the links that are damaged 

diagonally represent cracks and are branching as they grow. The horizontal lines are the 

cohesive damage of the link. This example demonstrates the flexural-shear cracking 

behavior of a reinforced concrete beam. 

 

5.3 Unreinforced cantilever concrete beam 

 In this example, a 2D unreinforced cantilever beam is simulated. A fixed support 

is represented at the left end of the beam by restraining all the degrees of freedom of a 

column of particles. A concentrated load is applied to a column of particles at the free 

end of the beam. Fig 5.8 shows the description of the cantilever beam problem. This 

problem is simulated on a personal computer with a particle spacing of one inch. The 

simulation time for this problem is 27 minutes.  

  

Fig. 5.7 Close view of the cracks shown in Fig 5.6 (b) 
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The load, P, required for the beam shown in Fig. 5.8 for the tensile flexural crack 

to appear is found to be 2.5 kips. This load is equally distributed to all the 23 loaded 

particles on the right end of the beam. When a load of 2.5 kips is applied at the free end 

of the beam shown in Fig 5.8, the beam showed no sign of damage and a steady state 

solution was achieved. A load 2.7 kips is applied to observe the damage. 

Fig. 5.9 shows the deformed shape of the beam with a crack. The ultimate load 

from pdQ and the analytical solution are comparable. This shows that the concrete model 

proposed in Chapter 3 and the calibrated material properties for the concrete model are 

reasonable. 

Fig. 5.8 Description of unreinforced cantilever concrete beam  
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Fig. 5.9 Deformed shape of unreinforced cantilever beam 

Time step 8000 

Time step 10,000 

Time step 12,000 
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5.4 Reinforced cantilever concrete beam 

 This is the same problem as that of the previous cantilever beam but now it is 

reinforced with five steel bars of half-inch diameter in tension side at a distance of 1.5” 

from the top of the beam. Figure 5.10 shows the details of the beam model. 

 

This problem is simulated using the parallel version of pdQ. Four computing 

nodes with 16 processors are assigned to run this problem. The program took about 6 

minutes to complete the simulation.  

All the boundary conditions remain the same as in the previous problem. From 

ACI 318 the flexural and shear strength of the beam is found to be 10.35 kips and 37. 94 

kips.  It is clear from this that a flexural crack should start from the tension side of the 

beam. 

A load of 7.5 kips is applied on the beam shown in Fig. 5.10. Fig. 5.11 shows the 

deformed shape of the reinforced cantilever beam. It is clear that the beam is failing in 

flexure.  Crushing of the concrete particles can be noticed in the deformed shape of the 

beam with green color. The links that are failing in compression are represented by the 

green color.  

Fig. 5.10 Description of unreinforced cantilever concrete beam  
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The deformed beam shapes (red color) at different time steps are shown in Fig 

5.11, the deformations are magnified by 50 times, the damage factor is 1, and the total 

number of particles is 2,121. In the Fig. 5.11, the deformed shape of the beam in shown 

twice in two columns at the same timestep. The figure to the left shows the deformed 

shape of the beam with the links that are broken. Blue color lines represent the links that 

are failed in tension, while the green color represents compressive broken links. 

The reinforced cantilever beam example demonstrates the features of the concrete 

model. Reinforcement increases the flexural strength of the beam compared to 

unreinforced beam. It fails approximately at the same load that is calculated from the ACI 

code. Crushing of the concrete is observed after the steel yields. 
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Fig. 5.11 Deformed shape of reinforced cantilever beam 

Time step 180,000 

Time step 120,000 

Time step 60,000 

Time step 30,000 

Time step 20,000



www.manaraa.com

 
 

54 
 

5.4 Unreinforced concrete deep beam 

  A deep beam of length-to-depth ratio of two is simulated as shown in Fig. 5.12. It 

is expected that the deep beam with aspect ratio of 2 should fail in shear at supports. For 

this problem the spacing between the particles are kept to be one quarter of an inch. A 

uniformly distributed load is applied on the beam as shown in beam description.  

 

 According to ACI 318, the shear strength of the beam shown in Fig. 5.12 is found 

to be 75.8 kips. The uniformly distributed load required to produce the failure shear in the 

beam is found to be 7.58 kip/in. When a load of 4.75 kip/in is applied on the beam, the 

damage was observed with a small crack and then a static solution was achieved. A load 

of 5.00 kip/in is applied to observe the shear failure of the deep beam. Fig. 5.13 shows 

the deformed shape of the beam with shear failure. Cracks initiated near the supports 

where the shear is critical for deep beams.  The deformed shape of the beam is plotted 

twice at the same time step. The figure on the left is plotted showing the links that failed. 

Blue-colored lines are the links that failed in tension, while the green-colored links 

represent links that failed in compression. The total number of particle is 3703. This 

problem is simulated using a machine with 8 processors. The time required to complete 

Fig. 5.12 Description of unreinforced concrete deep beam  



www.manaraa.com

 
 

55 
 

the simulation is 4 minutes. Timestep is 8.39E-7 seconds. The deformations are 

magnified by 50x. 

 

 

  

Fig. 5.13 Deformed shape of unreinforced deep beam 

Time step 12,000 

Time step 18,000 

Time step 20,000 

Time step 21,000 
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 In this chapter, example problems were simulated to demonstrate the micropolar, 

state-based, lattice-based peridynamic concrete model proposed in this thesis. All the 

examples demonstrate the expected behavior of the beams. Though only a few 

benchmark problems were presented in this chapter, we can conclude that the model is 

capable of representing many of the most important features of concrete, including 

elasticity, damage and fracture. In the next chapter, we briefly summarize the work done 

in this thesis with conclusions drawn from these benchmark problems. 
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Chapter 6 Conclusions 

 In this chapter a brief summary of the work done in this thesis is presented. The 

conclusions are drawn based on the outcome of the results from the example problems. 

6.1 Summary and conclusion. 

 The micropolar lattice-based, state-based peridynamic model (Fig. 6.1) presented 

in this thesis has the capability of modeling inelastic concrete damage. In the state-based 

model, the forces acting on the two particles no longer depend only on the states of the 

two particles, but they also depend on the states of the neighboring particles.  

 

 In this micropolar, state-based, lattice-based peridynamic concrete model, we 

have introduced new damage parameters, (ωc and ωt). These damage parameters depend 

on the stretch in the link and evolve during the solution. The maximum values of the 

f 

S 

{f} = (1-ωt) (1-ωc) [kij] {dj} 

Stens αtens Stens 

Scompαcomp Scomp 

if ωtmax = 0

if ωtmax > 0 

ωt = ωc = 0  0 < ωt  < 1 0 < ωc  < 1   ωt  = 1  ωc ≥ 1  

Fig. 6.1 Micropolar peridynamic damage model for concrete 

ωtmax is the maximum tensile 
damage, ωt, of any link attached to 
either of the particles connected to 
the link with stretch, S.  
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damage parameters, (ωc and ωt), are 1 representing the complete damage of the link 

where the two particles no longer have a bond, and their minimum values are zero, 

representing linear elastic behavior. Unlike the previous concrete model in pdQ, once the 

link experiences damage, this damage increases progressively. The damage is 

irreversible.  

 In the linear elastic range of the stretch in the link, the forces and the stretch in the 

link can follow both directions as shown in Fig. 6.1. When the stretch in the link is in 

linear elastic and the particles are in dynamic motion, there can be reversal of the stretch 

which may increase or decrease.  

The calibrated material parameters of the concrete model are shown to have 

reasonably replicated the features of concrete such as elasticity, damage, and fracture. 

Although 2D problems are simulated in this thesis as examples, the peridynamic 

micropolar model for concrete proposed in this thesis is also valid for 3D problems.  

 Although only the concrete model was defined and calibrated in this thesis, some 

example problems for a reinforced concrete beam are simulated. They show the 

capability of the model for a wide variety of problems. Shear cracks in reinforced 

concrete beams also show behavior similar to that seen in laboratory tests.  

 In this thesis we studied the sensitivity of the results with respect to the particle 

spacing. Although there is a small change in load at which first damage appears, the 

crack pattern is still consistent with the laboratory results, regardless of particle spacing.  

 In this implementation of micropolar, state-based, lattice-based peridynamic 

model for concrete we have the flexibility of modeling any quasi-brittle material (we 

define only a concrete model in this thesis) with any Poisson’s ratio. 
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6.2 Future work. 

 Decent attempts have been made to fully represent the concrete by the micropolar 

state-based, lattice based model. This concrete model has still areas for improvement, as 

discussed below. 

 In this model the damage of the link, (ωc and ωt), is a function  of the stretch 

in the link. Forces in the link are dependent on axial and flexural rigidities. ωc or ωt, 

should also probably depend on shear and bending deformations. 

 A better reinforced concrete bond model (steel-concrete particle interactions) can 

be developed. We have simplified the interactions between concrete and steel particles in 

this work (not considering the damage between concrete and steel particles). Better 

interaction models between them may improve model fidelity. 

 In this research we focused only on 2D problems; with some minor changes this 

concrete model can be used to simulate 3D problems.  
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